On the backward stability of the second barycentric formula for interpolation
نویسندگان
چکیده
We present a new stability analysis for the second barycentric formula, showing that this formula is backward stable when the relevant Lebesgue constant is small.
منابع مشابه
The numerical stability of barycentric Lagrange interpolation
The Lagrange representation of the interpolating polynomial can be rewritten in two more computationally attractive forms: a modified Lagrange form and a barycentric form. We give an error analysis of the evaluation of the interpolating polynomial using these two forms. The modified Lagrange formula is shown to be backward stable. The barycentric formula has a less favourable error analysis, bu...
متن کاملOn the numerical stability of the second barycentric formula for trigonometric interpolation in shifted equispaced points
We consider the numerical stability of the second barycentric formula for evaluation at points in [0, 2π ] of trigonometric interpolants in an odd number of equispaced points in that interval. We show that, contrary to the prevailing view, which claims that this formula is always stable, it actually possesses a subtle instability that seems not to have been noticed before. This instability can ...
متن کاملStability of Barycentric Interpolation Formulas for Extrapolation
The barycentric interpolation formula defines a stable algorithm for evaluation at points in [−1, 1] of polynomial interpolants through data on Chebyshev grids. Here it is shown that for evaluation at points in the complex plane outside [−1, 1], the algorithm becomes unstable and should be replaced by the alternative modified Lagrange or “first barycentric” formula dating to Jacobi in 1825. Thi...
متن کاملStability of Barycentric Interpolation Formulas
The barycentric interpolation formula defines a stable algorithm for evaluation at points in [−1, 1] of polynomial interpolants through data on Chebyshev grids. Here it is shown that for evaluation at points in the complex plane outside [−1, 1], the algorithm becomes unstable and should be replaced by the alternative modified Lagrange or “first barycentric” formula dating to Jacobi in 1825. Thi...
متن کاملApplication of the block backward differential formula for numerical solution of Volterra integro-differential equations
In this paper, we consider an implicit block backward differentiation formula (BBDF) for solving Volterra Integro-Differential Equations (VIDEs). The approach given in this paper leads to numerical methods for solving VIDEs which avoid the need for special starting procedures. Convergence order and linear stability properties of the methods are analyzed. Also, methods with extensive stability r...
متن کامل